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1. Introduction

Fraunhofer diffraction by a circular lens or aperture is
a ubiquitous phenomenon in optics in general and ra-
diometry in particular. Figure 1 illustrates two practical
situations in which Fraunhofer diffraction occurs. In the
first example, diffraction limits the ability of a lens or
other focusing optic to focus light. According to geo-
metrical optics, it is possible to focus rays incident on a
lens to converge at a focal point. In practice, even with
the focal point at the center of a finite-sized circular
detector, some of the light incident on the lens fails to
be collected, giving rise to a “diffraction loss.”

The second example can occur when using a source,
such as a blackbody cavity source viewed through a
small “pinhole” aperture, to calibrate optical systems
intended for observing celestial objects or for use in
remote-sensing applications. In this case, the angle sub-
tended by the cavity opening at the aperture is larger
than the angle subtended by the detector pupil on the
dark side of the aperture [1]. Because the former angle
is larger than the latter one, geometrical optics suggests
that the total power detected depends only on the black-
body temperature and a geometrical factor related to the
pinhole aperture, detector optics, and relative separa-

tion, because the detector pupil is overfilled. However,
diffraction leads to losses in the total power reaching the
detector.

All of the above diffraction losses have been a subject
of considerable interest, and they have been considered
by Blevin [2], Boivin [3], Steel, De, and Bell [4], and
Shirley [5]. The formula for the relative diffraction loss
in spectral power is already well known, and it is noted
below. However, a formula for the diffraction loss in the
total power for the case of a Planckian source such as a
star or blackbody appears to have been given only in the
high-temperature limit. This article reports a formula
for the diffraction loss in the power for such a source at
all temperatures. The formula is useful for predicting
the loss in cases such as the examples discussed, and it
can be used as an independent check for numerically
calculated diffraction losses.

For the radiation present at a given wavelength � , the
diffraction loss can be described in terms of a unit-less
parameter, v = 2��R /� . R is the radius of the lens or
aperture. The angle � is defined in either of two ways:
either 2� is the full angle subtended by the detection
pupil at the focusing optic, or 2� is the full angle

775



Volume 106, Number 5, September–October 2001
Journal of Research of the National Institute of Standards and Technology

Fig. 1. Two optical systems are shown, for which the (spectral) power detected is subject to
Fraunhofer diffraction. In the first system (a), a lens concentrates radiation on the detector. In the
second system (b), radiation from a blackbody cavity may pass through the blackbody cavity
opening, pass through the pinhole aperture, and reach the detector pupil.

subtended by the blackbody cavity opening at the
pinhole aperture. For a source in thermal equilibrium
at temperature T , the effects of temperature on the
distribution of spectral power enter relevant equations
through the ratio, c2/(�T ) ≡ Av . Here, c2 = hc /k =
1.438 7752(25) � 10�2 m K is the second radiation con-
stant, where the number in parenthesis is the one-stan-
dard-deviation uncertainty in the last two digits. This
implicitly defines another unit-less parameter,
A = c2/(2��RT ). The relative effects of diffraction on
the total power only depend on this one parameter, A .

As a final note, if the detection pupil subtends a
considerable angle, the diffraction losses can be approx-
imately given as the weighted average of losses arising,
in the case of an infinitesimal detector, for values of �
varying between � minus the half-angle subtended by
the detector and � plus the same half-angle. Analogous
weighting can be used, in the context of the first exam-
ple, to account for the finite angular diameter of a source
(smaller than 2� ). Such averaging is discussed else-
where [5] but is not discussed further in this work,
which henceforth assumes a single effective value of � .

2. Derivation of Formula

In the Fraunhofer case, the ratio of the true spectral
power to the spectral power predicted by geometrical
optics is

F (v ) = 1 � J2
0(v ) � J2

1(v ). (1)

Here, Jm (v ) is a cylindrical Bessel function. It is neces-
sary to incorporate this wavelength-dependent factor
when evaluating the ratio of the total power detected to
the total power predicted by geometrical optics. For a
source whose spectral output obeys the Planck distribu-
tion, this unit-less ratio is given by

F (A ) =
�
�

0
dvv 3[exp(Av ) � 1]�1[1 � J2

0(v ) � J2
1(v )]

�
�

0
dvv 3[exp(Av ) � 1]�1

. (2)

The value of the denominator is familiar, being given
by
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�
�

0
dvv 3[exp(Av ) � 1]�1 = �

�

n=1
�
�

0
dvv 3 exp(�nAv )

= 6 �
�

n=1
(nA )�4 = 6A�4� (4). (3)

Here, � (n ) is the Riemann zeta function. When evaluat-
ing the numerator, two techniques have been found to be
helpful: one for the “low-temperature” case (defined as
A > 4) and one for the “high-temperature” case (defined
as A < 4). By such definitions, “high” and “low” temper-
ature cases arise depending on the average diffraction
loss for a source at temperature T . This depends on T
and the geometry through A . In either case, one first
makes use of the relation,

J0[2v sin(� /2)] = J2
0(v ) + 2 �

�

m=1
J2

m (v )cos(m� ), (4)

from which follows,

J2
0(v ) + J2

1(v ) =
1

2�
�
2�

0
d� (1 + cos� )J0[2vsin(� /2)]. (5)

Low-Temperature Case

To evaluate the numerator in the low-temperature
case, series expansion of the latter Bessel function in Eq.
(5) yields

J2
0(v)+J2

1(v)=
1
�

�
�

s=0

(�1)s v 2s

(s !)2 �
2�

0
d� [1 � sin2(� /2)]sin2s(� /2)

= 2�
�

s=0

(�1)s v 2s

(s !)2 �(2s � 1)!!
(2s )!!

�
(2s + 1)!!
(2s + 2)!!�

= 2�
�

s=0

(�1)s v 2s

(s !)2 �(2s � 1)!!
(2s + 2)!!� (6)

This permits one to rewrite Eq. (2) as follows:

Q (A ) ≡ 6A�4� (4)[1 � F (A )]

= ��
n=1
�
�

0

dvv 3exp(�nAv )[J2
0(v ) + J2

1(v )]

= 2��
s=0

(�1)s(2s + 3)!� (2s + 4)
(s !)2A 2s+4 �(2s � 1)!!

(2s + 2)!!�
= � ��

s=0

(2�)2s+4(2s + 3)!(2s � 1)!!B2s+4

(s !)2(2s + 4)!(2s + 2)!!A 2s+4 , (7)

In this expression, Bi is a Bernoulli number. The sum
converges for all A > 2, and one obtains an error in F (A )
estimated to be as small as 10�14 for A > 4 if one sums
up to s = 28.6

High-Temperature Case

To evaluate the numerator in the high-temperature
case, the relation in Eq. (2) is rewritten to render

Q (A ) = 6A�4� (4)[1 � F (A )]

= �
�

n=1
�
�

0
dvv 3exp(�nAv )[J2

0(v ) + J2
1(v )]

= �
�

n=1
Q1(nA ), (8)

with

Q1(A ) = �
�

0
dvv 3exp(�Av )[J2

0(v ) + J2
1(v )]. (9)

Use of Eq. (5) and the relation,

�
�

0
dvexp(�	v )J0(
v ) =

1

�	 2 + 
 2
, (10)

one has

Q1(A ) = ��
d

dA	
3 1
2�

�
2�

0
d�

1 + cos�

�A 2 + 4sin2(� /2)
. (11)

Making the abbreviation, w = 4/(A 2 + 4), one has

Q1(A ) = ��
d

dA	
3� 4

��A 2 + 4
�

�/2

0
d�

cos2�

�1 � wcos2�
�

= ��
d

dA	
3
 4

��A 2 + 4
�K (w ) � E (w )

w ��
= ��

d
dA	

3
�A 2 + 4
�

[K (w ) � E (w )]�, (12)

where E (w ) and K (w ) are respectively complete elliptic
integrals of the first and second kind, defined according
to the convention,7

E (w ) = �
�/2

0
d��1 � wsin2� ,

K (w ) = �
�/2

0

d�

�1 � wsin2�
. (13)

(In a different convention, w is replaced by w 2 in the
integrand but nowhere else.) From the properties of
elliptic integrals [8], one may obtain

Q1(A ) =
4

�A 3�4(2 + A 2)E (w ) � A 2K (w )
(A 2 + 4)3/2 �, (14)

and

777



Volume 106, Number 5, September–October 2001
Journal of Research of the National Institute of Standards and Technology

Q1(A ) = �
d

dA � 4E (w )

�A 2�A 2 + 4
�. (15)

The latter result is easily obtained, because Q1(A ) has
already been written as the third derivative of an expres-
sion with respect to A .

The closed-form result in Eq. (14) may be directly
substituted in Eq. (8), after which one may sum over n .
Because the summand can be integrated according to
Eq. (15), however, the Euler-Maclaurin formula may be
used to obtain a more easily evaluated, asymptotic ex-
pression for Q (A ):

Q (A) =
4� (3)
�A 3 + �

N�1

n=1
Q̃1(nA) +

1
A

�
�

NA
dA'Q̃1(A' ) +

1
2

Q̃1(NA )

�� �
m�1

s=1

B2s

(2s )!
A 2s�1� d

dA'	
2s�1

Q̃1(A' )��
A'=NA

+ Rm (N , A ),

(16)

where Bi is again a Bernoulli number. Here a new func-
tion,

Q̃1(A ) = Q1(A ) �
4

�A 3 , (17)

has been introduced as the summand, so that the largest
part of Q1(A ) is extracted from the sum prior to summa-
tion.

The parameters m and N are both positive integers.
Rm (N , A ), the remainder (i.e., error) term, usually de-
creases initially with increasing m , but then rapidly
diverges. It is therefore good to choose a suitable combi-
nation of N and m , for a given value of A , to have an
efficient yet accurate result. Increasing N should usually
improve results, and one obtains an error in F (A ) esti-
mated to be as small as 10�14 for A < 4 if one uses
N = 60 and m = 5.

Explicitly, Q (A ) is given by

Q (A ) =
4� (3)
�A 3 + �

N�1

n=1
Q̃1(nA )

+
2

�	 3 
[8(N+1)+2	 2(N+2)]E (� )�	 2K (� )
(4+	 2)3/2 �N�1�

+
1

�	 3 ��
1
N

+
1

3N 3 �
1

3N 5 +
3

5N 7 � 


	
+

1
�	 3 �

m�1

s=1

B2s

(2s)!
[es(	 )E (� )�	 2ks (	 )K (� )]fs

N 2s�1(4+	 2)(4s+1)/2

+ Rm (N, A ). (18)

One should include only the first m � 1 terms in the
parenthetic expression preceding the second sum. Two
abbreviations, 	 = NA and � = 4/(4 + 	 2), have been in-
troduced. In the second sum, the first several constants
are given by

B2

2!
=

1
12

,
B4

4!
= �

1
720

,
B6

6!
=

1
30240

,
B8

8!
= �

1
1209600

,

f1 = 4, f2 = 24, f3 = 48, f4 = 2880. (19)

Likewise, the first several e - and k -functions are given
by

e1(	 ) = 96 + 68	 2 + 19	 4,
k1(	 ) = 12 + 7	 2,
e2(	 ) = 5120 + 6112	 2 + 2880	 4 + 630	 6 + 117	 8,
k2(	 ) = 640 + 624	 2 + 216	 4 + 57	 6,
e3(	 ) = 1720320 + 2908160	 2 + 2093376	 4 +

829552	 6 + 196764	 8 + 19917	 10 + 3726	 12,
k3(	 ) = 215040 + 316480	 2 + 193072	 4 + 62892	 6 +

8265	 8 + 2046	 10,
e4(	 ) = 33030144 + 72310784	 2 + 70087936	 4 +

39429888	 6 + 14163680	 8 + 3350128	 10 +
572853	 12 + 21062	 14 + 6121	 16,

k4(	 ) = 4128768 + 8135680	 2 + 6993408	 4 +
3421440	 6 + 1037920	 8 + 219516	 10 +
8820	 12 + 3601	 14. (20)

3. Evaluation of Formula

In the high-temperature limit, this gives a result of the
form

F (A ) = 1 �
[4A� (3)/� + O (A 3 ln A )]

6� (4)
, (21)

and evaluating the successive terms in Eq. (21) may be
both difficult and unfruitful, because the series appears
to be both very complicated and slow to converge. Note
that the leading terms in Eq. (21) are consistent with
other works cited, such as the work of Blevin. In the
low-temperature limit, one has

F (A ) =
10�2

21A 2 �
�4

4A 4 + 


. (22)

Figure 2 shows F (A ) for a range of values of A
bridging the low- and high-temperature regions. The
solid curve indicates “exact” results obtained using Eq.
(7) for A > 4 and Eq. (18) for A < 4. The dashed curves
indicate approximate results for low- and high-tempera-
ture limits, obtained using the respective formulas in
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Fig. 2. F (A ) vs A according to Eq. (7) and Eq. (18) (solid line), and
Eqs. (21-22) (dotted line). The latter, approximate results apply in the
limits of small A and large A .

Eqs. (21-22). Likewise, Table 1 shows sample values of
F (A ) over a similar range. For 0 < A < 0.2 and A > 8,
inclusion of terms shown in Eqs. (21-22) yields an error
in F (A ) smaller than 0.001. While this immediate dis-
cussion helps provide a sense of the behavior of F (A ),
accurate values should be found using Eq. (7) and Eq.
(18).

Table 1. F (A ) at sample values of A

A F (A ) A F (A ) A F (A ) A F (A )

0.2 0.9526 2.2 0.4643 4.2 0.2055 6.2 0.1077
0.4 0.9041 2.4 0.4259 4.4 0.1912 6.4 0.1018
0.6 0.8543 2.6 0.3907 4.6 0.1781 6.6 0.0964
0.8 0.8033 2.8 0.3587 4.8 0.1663 6.8 0.0914
1.0 0.7514 3.0 0.3297 5.0 0.1555 7.0 0.0867
1.2 0.6994 3.2 0.3034 5.2 0.1457 7.2 0.0824
1.4 0.6481 3.4 0.2797 5.4 0.1367 7.4 0.0784
1.6 0.5984 3.6 0.2582 5.6 0.1285 7.6 0.0746
1.8 0.5508 3.8 0.2389 5.8 0.1210 7.8 0.0712
2.0 0.5060 4.0 0.2214 6.0 0.1141 8.0 0.0679
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